Abstract

Prior theoretical models of arterial remodeling in response to changes in blood flow were based on the assumption that material properties of the arterial wall remain unchanged during the remodeling process. According to experimental findings, however, remodeling due to increased flow is accompanied by alteration in the structural properties of elastin, which results in a decrease in its effective elastic stiffness. To account for these effects, we propose a predictive model of arterial remodeling hypothesizing that the variation in mechanical properties of elastin is initiated and driven by the deviation of the intimal shear stress from its baseline value. Geometrical remodeling restores the wall stress distribution as it was under normal flow conditions. A constrained mixture approach is followed. Artery is modeled as a thick-walled cylindrical tube made of nonlinear, elastic, anisotropic and incompressible material. Data for a rabbit thoracic aorta have been employed. At the final adapted state, the model predicts a non-monotonic dependence of arterial compliance on the magnitude of flow. This result is in agreement with available experimental data in the literature.KeywordsArterial remodelingBlood flowMaterial propertiesElastin fenestrations

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.