Abstract

Mutations in Artemis in both humans and mice result in severe combined immunodeficiency due to a defect in V(D)J recombination. In addition, Artemis mutants are radiosensitive and chromosomally unstable, which has been attributed to a defect in nonhomologous end joining (NHEJ). We show here, however, that Artemis-depleted cell extracts are not defective in NHEJ and that Artemis-deficient cells have normal repair kinetics of double-strand breaks after exposure to ionizing radiation (IR). Artemis is shown, however, to interact with known cell cycle checkpoint proteins and to be a phosphorylation target of the checkpoint kinase ATM or ATR after exposure of cells to IR or UV irradiation, respectively. Consistent with these findings, our results also show that Artemis is required for the maintenance of a normal DNA damage-induced G2/M cell cycle arrest. Artemis does not appear, however, to act either upstream or downstream of checkpoint kinase Chk1 or Chk2. These results define Artemis as having a checkpoint function and suggest that the radiosensitivity and chromosomal instability of Artemis-deficient cells may be due to defects in cell cycle responses after DNA damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.