Abstract

In situ electrochemical techniques and surface analysis were used to investigate the weathering behavior of arsenopyrite in chlorine-containing brine. Cyclic voltammetry measurements showed that arsenopyrite weathering releases S°, As (III) and Fe (II) during the initial step, even contains different concentrations of H+ and Cl−, and terminal transformation into SO42-, As (V) and Fe (III), respectively. Cl− ions promote the arsenopyrite weathering through diffusion control or adsorption control when Cl- ions are at low or high concentrations. When Ccl− increased from 0.00 to 0.05 mol/L, As (III) release increases from 549.33 to 1135.86 g·m-2·y-1, and the promotion efficiency is 107 %; whereas from 0.20 to 0.40 mol/L, the promotion efficiency is only 15.1 %. H+ ions accelerate arsenopyrite weathering for O2 + 4H+ + 4e− → 2H2O, and the relationship between corrosion current density (icorr) and pH is icorr = −26.54 pH + 199.75. Raman spectra confirm that corrosion produces S° and As (V) and EDX shows the passivation layers are mainly composed of elements Fe, As, S and O, while the adsorption layer are mainly composed of elements Fe, As, S and Cl. The experimental results are of great significance for arsenopyrite geological environment assess and removal of arsenic ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.