Abstract

Arsenic (As) contaminants post tremendous threats to environment safety. Pristine hydrochar (PHC), thiourea-activated hydrochar (THC), and thiourea-Fe(NO3)3-activated hydrochar (Fe2O3@THC) were fabricated from dairy cattle manure via one-pot hydrothermal carbonization at 250 ℃ and applied for aqueous As(V) removal. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize hydrochars and As(V) adsorption. Thiourea increased N and S functional groups (–NH2, C–N, C=S and S=O). Fe(NO3)3 introduced γ-Fe2O3 nanoparticles and provided Fe2O3@THC with Fe–O. The combination of thiourea and Fe(NO3)3 granted Fe2O3@THC with the largest surface area (33.45 m2/g), and the highest total pore volume (0.095 cm3/g) among three hydrochars. As(V) adsorption was a physicochemical process involving electrostatic attraction, complexation, ion exchange and H-bond interaction. The maximum As(V) adsorption capacities and partition coefficients decreased as follows: Fe2O3@THC (44.80 mg/g; 38.44 L/g) > THC (38.77 mg/g; 5.94 L/g) > PHC (19.05 mg/g; 1.17 L/g). Three hydrochars exhibited preferable reusability in NaOH solution with only 24.2%, 11.8% and 14.1% decrease in adsorption rates after four cycles for PHC, THC and Fe2O3@THC, respectively. Fe2O3@THC is a promising adsorbent for efficient As(V) removal. This study explored the efficient As(V) removal by activated hydrochars with future research potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.