Abstract

An experiment was done to see the effect of water soluble organic carbon in soil on the release of arsenic (As). Fifty soil samples, rich in organic carbon were collected from five districts of Bangladesh namely Comilla, Jessore, Satkhira, Gopalganj and Bagerhat. Water soluble organic carbon (WSOC) of the analyzed samples ranged between 15 to 466 mg/L with an average of about 155 mg/L whereas the arsenic concentrations varies between 1.4 to 5.9 mg/L with an average of 4.2 mg/L. The arsenic contents were much higher in soils where peat deposits are prominent (Gopalganj). There has been a log-log relationship between WSOC and soil, as for all the soils, the R2 ranging from 0.355 to 0.811. Correlation between water soluble organic carbon and soil arsenic showed a positive and significant relation between the two parameters indicating the fact that organic or peat deposits contributes to the release of arsenic in Bangladesh environments.

Highlights

  • The widespread use of arsenic contaminated groundwater for irrigation has been reported to pose the risk of soil build-up of arsenic and its subsequent transfer to plants [1] [2] [3] [4]

  • In tube-wells from 41 of the total 64 districts in Bangladesh, 51% of the samples were above 0.01 mg L−1 (WHO-permissible limit for drinking water), 35% were above 0.05 mg L−1, 25% were above 0.10 mg L−1, 8.4% were above 0.3 mg L−1, and 0.1% were above 1.0 mg L−1 [8]

  • The water soluble organic carbon of the soil samples from different districts showed that those from Comilla district ranged from 15 mg/L to 191 mg/L and the average value is 117.5 mg/L; those from Jessore district ranged from 46 mg/L to173 mg/L and the average value is 138

Read more

Summary

Introduction

The widespread use of arsenic contaminated groundwater for irrigation has been reported to pose the risk of soil build-up of arsenic and its subsequent transfer to plants [1] [2] [3] [4]. In some areas of Bangladesh, groundwater arsenic concentrations reach 2 mg L−1 [7] [8], where the WHO provisional guideline value for drinking water is only 0.01 mg L−1. In tube-wells from 41 of the total 64 districts in Bangladesh, 51% of the samples were above 0.01 mg L−1 (WHO-permissible limit for drinking water), 35% were above 0.05 mg L−1, 25% were above 0.10 mg L−1, 8.4% were above 0.3 mg L−1, and 0.1% were above 1.0 mg L−1 [8]. In areas irrigated with contaminated water, the soil level can reach up to 83 mg As kg−1 and report recorded elevated As concentrations of up to 57 mg As kg−1 in soils collected from four districts of Bangladesh [10]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.