Abstract
Titanium dioxide nanoparticles (nano-TiO2) are widely used in consumer products. Nano-TiO2 dispersion could, however, interact with metals and modify their behavior and bioavailability in aquatic environments. In this study, we characterized and examined arsenate (As(V)) accumulation, distribution, and toxicity in Daphnia magna in the presence of nano-TiO2. Nano-TiO2 acts as a positive carrier, significantly facilitating D. magna's ability to uptake As(V). As nano-TiO2 concentrations increased from 2 to 20 mg-Ti/L, total As increased by a factor of 2.3 to 9.8 compared to the uptake from the dissolved phase. This is also supported by significant correlations between arsenic (As) and titanium (Ti) signal intensities at concentrations of 2.0 mg-Ti/L nano-TiO2 (R = 0.676, P < 0.01) and 20.0 mg-Ti/L nano-TiO2 (R = 0.776, P < 0.01), as determined by LA-ICP-MS. Even though As accumulation increased with increasing nano-TiO2 concentrations in D. magna, As(V) toxicity associated with nano-TiO2 exhibited a dual effect. Compared to the control, the increased As was mainly distributed in BDM (biologically detoxified metal), but Ti was mainly distributed in MSF (metal-sensitive fractions) with increasing nano-TiO2 levels. Differences in subcellular distribution demonstrated that adsorbed As(V) carried by nano-TiO2 could dissociate itself and be transported separately, which results in increased toxicity at higher nano-TiO2 concentrations. Decreased As(V) toxicity associated with lower nano-TiO2 concentrations results from unaffected As levels in MSFs (when compared to the control), where several As components continued to be adsorbed by nano-TiO2. Therefore, more attention should be paid to the potential influence of nano-TiO2 on bioavailability and toxicity of cocontaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.