Abstract

Objectives:The objectives of this study is bioremediation and detoxification of arsenite using arsenic resistance system (ars) genotypes of Arsenic Oxidizing Bacteria (AOB) isolated from highly As-contaminated mine.Methods:Bacterial strains that are resistant to arsenic were isolated from the Samkwang mine. The identification of AOB was conducted by analyzing the 16S rRNA gene using universal primers. To determine the genotypes of the arsenic resistance system (ars), specific primers were used for each gene. The extent of arsenic resistance was measured, and the efficiency of arsenite oxidation was assessed through a batch test. Arsenic concentration was measured using ICP-MS.Results and Discussion:The arsenic concentrations at site 1 of the Samkwang mine were found to be 1,322 mg/kg. This concentration is 26.4 times higher than the standard for soil pollution concerns (50 mg/kg) and 8.8 times higher than the standard for soil pollution measures (150 mg/kg). The appropriate remediation is studied such as bacterial remediation. The three efficient AOBs were identified as Agrobacterium tumefaciens EBC-SK1 (MF928870), Ochrobactrum anthrophi EBC-SK4 (MF928873), Ochrobactrum anthrophi EBC-SK12 (MF928881), respectively. The arsenic resistance system (ars) genotype were detected, which is the leader genes of the arsenic oxidation system (arsR and arsD), and the membrane gene (arsB). The arsB is involved in the encoding of the efflux/influx pumping system and moves arsenite into the bacterial cells. Arsenite-oxidizing (aox) genes are activated to oxidize arsenite into arsenate. The AOBs biotransform arsenite to arsenate with the regulation of ars genes, which detoxify highly As-contaminated mine.Conclusion:The AOBs from Samkwang mine are known for their resistance to highly toxic arsenic environments. They play a crucial role in the bioremediation of abandoned mines by transforming As(III) into As(V) through biotransformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.