Abstract

Abstract Hydraulic fracturing has unlocked vast amounts of hydrocarbons trapped within unconventional shale formations. This large-scale engineering approach inadvertently introduces microorganisms into the hydrocarbon reservoir, allowing them to inhabit a new physical space and thrive in the unique biogeochemical resources present in the environment. Advancing our fundamental understanding of microbial growth and physiology in this extreme subsurface environment is critical to improving biofouling control efficacy and maximizing opportunities for beneficial natural resource exploitation. Here, we used metaproteomics and exometabolomics to investigate the biochemical mechanisms underpinning the adaptation of model bacterium Halanaerobium congolense WG10 and mixed microbial consortia enriched from shale produced fluids to hypersalinity and very low reservoir flow rates (metabolic stress). We also queried the metabolic foundation for biofilm formation in this system, a major impediment to subsurface energy exploration. For the first time, we report that H. congolense WG10 accumulates tyrosine for osmoprotection, an indication of the flexible robustness of stress tolerance that enable its long-term persistence in fractured shale environments. We also identified aromatic amino acid synthesis and cell wall maintenance as critical to biofilm formation. Finally, regulation of transmembrane transport is key to metabolic stress adaptation in shale bacteria under very low well flow rates. These results provide unique insights that enable better management of hydraulically fractured shale systems, for more efficient and sustainable energy extraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.