Abstract

Before instruction, children solve many arithmetic word problems with informal strategies based on the situation described in the problem. A Situation Strategy First framework is introduced that posits that initial representation of the problem activates a situation-based strategy even after instruction: only when it is not efficient for providing the numerical solution is the representation of the problem modified so that the relevant arithmetic knowledge might be used. Three experiments were conducted with Year 3 and Year 4 children. Subtraction, multiplication and division problems were created in two versions involving the same wording but different numerical values. The first version could be mentally solved with a Situation strategy (Si version) and the second with a Mental Arithmetic strategy (MA version). Results show that Si-problems are easier than MA-problems even after instruction, and, when children were asked to report their strategy by writing a number sentence, equations that directly model the situation were predominant for Si-problems but not for MA ones. Implications of the Situation Strategy First framework regarding the relation between conceptual and procedural knowledge and the development of arithmetic knowledge are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.