Abstract

Abstract We have systematically studied Ar-ion-milling-induced microstructural evolution in Cu50Zr45Ti5 metallic glass (MG) during specimen preparation for transmission electron microscopy (TEM). We have observed the formation of a Cu10Zr7 intermetallic phase in samples prepared using low energy ion milling (2 keV) but without evident crystallization. We also observed the formation of nanocrystalline Cu10Zr7 phase (with a possibility of being mixed with other minor phases) in samples prepared using high energy ion milling (⩾3 keV). In contrast, the MG samples remained in the glassy state without any microstructural changes when prepared by either electropolishing or low energy ion milling with liquid nitrogen cooling (2 keV). Further, our study suggests that chemical decomposition might be a necessary intermediate stage for crystallization. In situ TEM electron irradiation shows ion-milling-induced phase segregation and preferred nanocrystallization in the precipitated regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.