Abstract
The nucleotides comprising the ribosomal decoding center are highly conserved, as they are important for maintaining translational fidelity. The bacterial A-site has a small base variation as compared with the human analogue, allowing aminoglycoside (AG) antibiotics to selectively bind within this region of the ribosome and negatively affect microbial protein synthesis. Here, by using a fluorescence displacement screening assay, we demonstrate that neomycin B (NEO) dimers connected by L-arginine-containing linkers of varying length and composition bind with higher affinity to model A-site RNAs compared to NEO, with IC50 values ranging from ~40-70 nM, and that a certain range of linker lengths demonstrates a clear preference for the bacterial A-site RNA over the human analogue. Furthermore, AG-modifying enzymes (AMEs), such as AG O-phosphotransferases, which are responsible for conferring antibiotic resistance in many types of infectious bacteria, demonstrate markedly reduced activity against several of the L-arginine-linked NEO dimers in vitro. The antimicrobial activity of these dimers against several bacterial strains is weaker than that of the parent NEO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.