Abstract

We have established that the Arf tumor suppressor gene regulates mural cell biology in the hyaloid vascular system (HVS) of the developing eye. In the absence of Arf, perivascular cells accumulate within the HVS and prevent its involution. We now demonstrate that mural cell accumulation evident at embryonic day (E) 13.5 in Arf(-/-) mice was driven by excess proliferation at E12.5, when Arf expression was detectable in vitreous pericyte-like cells. Their expression of Arf overlapped with Pdgf receptor beta (Pdgfrbeta), which is essential for pericyte accumulation in the mouse. In cultured cells, p19Arf decreased Pdgfrbeta and blocked Pdgf-B-driven proliferation independently of Mdm2 and p53. The presence of a normal Arf allele correlated with decreased Pdgfrbeta in the embryonic vitreous. Pdgfrbeta was required for vitreous cell accumulation in the absence of Arf. Our findings demonstrate a novel, p53- and Mdm2-independent function for p19Arf. Instead of solely sensing excessive mitogenic stimuli, developmental cues induce Arf to block Pdgfrbeta-dependent signals and prevent the accumulation of perivascular cells selectively in a vascular bed destined to regress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.