Abstract

Based on the simulations of cloud features in February 2001 by the regional numerical weather prediction model—Advanced Regional Eta-coordinate Model (AREM), the dynamic and thermodynamic conditions for middle cloud formation over eastern China are studied. Diagnostic analysis partly confirms the previous suggestion that the middle stratiform clouds downstream of the Tibetan Plateau are maintained by the frictional and blocking effects of the plateau. In addition, it is found that the temperature inversion at plateau height over eastern China generated by the warm air advected from the plateau provides a favorable thermodynamic condition for middle clouds. Both diurnal variations of the mid-level divergence and the inversion over eastern China, which are determined by the atmospheric boundary activity over the Tibetan Plateau, dominate the cloud diurnal cycle. The middle cloud amount decreases and the cloud top falls in the daytime, but reverses at night. The comparison of cloud features between the simulations and the observations also proves that the AREM can well capture the distinctive continental stratiform cloud features downstream of the Tibetan Plateau.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.