Abstract

In this paper, we perform an estimate of the areal density achievable for microwave-assisted magnetic recording (MAMR) using micromagnetic simulations ( $\mu $ -mag), the grain-flipping probability (GFP) model, and a software recording channel simulation platform. In previous work, at Tohoku, micromagnetic simulations were run for the MAMR based on various grain sizes and bit lengths in a shingled magnetic recording scheme on single-layer recording media with high anisotropy energy. The micromagnetic outputs are subsequently used to characterize the GFP model and run low-density parity check coded channel simulations at the DSI. The channel simulations determine the code rate needed to make the MAMR work from which the user areal density for shingled MAMR can be determined. This system-level study gives us insight into the impact the error rates and the signal-to-noise ratio have on the areal density for the MAMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.