Abstract
Several approaches to quantum gravity suggest violations of Lorentz symmetry as low-energy signatures. This article uses a concrete Lorentz-violating quantum field theory to study different inertial vacua. We show that they are unitarily inequivalent and that the vacuum in one inertial frame appears, in a different inertial frame, to be populated with particles of arbitrarily high momenta. At first sight, this poses a critical challenge to the physical validity of Lorentz-violating theories, since we do not witness vacuum excitations by changing inertial frames. Nevertheless, we demonstrate that inertial Unruh-De Witt detectors are insensitive to these effects. We also discuss the Hadamard condition for this Lorentz-violating theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.