Abstract

AbstractThis article describes an experiment to evaluate the impact of different types of ellipses discussed in theoretical linguistics on Neural Machine Translation (NMT), using English to Hindi/Telugu as source and target languages. Evaluation with manual methods shows that most of the errors made by Google NMT are located in the clause containing the ellipsis, the frequency of such errors is slightly more in Telugu than Hindi, and the translation adequacy shows improvement when ellipses are reconstructed with their antecedents. These findings not only confirm the importance of ellipses and their resolution for MT, but also hint toward a possible correlation between the translation of discourse devices like ellipses with the morphological incongruity of the source and target. We also observe that not all ellipses are translated poorly and benefit from reconstruction, advocating for a disparate treatment of different ellipses in MT research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.