Abstract

Maternal smoking during pregnancy is associated with adverse perinatal outcomes. In view of concerns about underreporting, benzo[a]pyrene (B[a]P)-DNA adducts could be used to provide information about long-term in utero exposure to smoking but have not previously been used with samples from neonates. This study aimed to verify whether B[a]P-DNA adducts could accurately assess tobacco smoke exposure during fetal life. The objectives were to correlate B[a]P-DNA adduct levels with active maternal and passive smoking and to determine the sensitivity and specificity of smoking and nonsmoking status by comparing neonatal B[a]P-DNA adduct levels with those of maternal self-reports. B[a]P-DNA adducts in neonatal buccal cell samples were determined by a competitive immunoassay. Three groups of neonates were constituted according to maternal self-reported smoking status during pregnancy: nonsmokers (n=25; control group), <10 cigarettes per day (n=18; S- group), or >10 cigarettes per day (n=21; S+ group). The mean B[a]P-DNA adduct level rose significantly when comparing the controls with the S- and S+ groups. Maternal active smoking had the strongest effect on B[a]P-DNA adduct levels in neonates. A cross analysis between B[a]P-DNA adduct levels and maternal self-reported levels revealed high sensitivity and specificity. This preliminary study suggests that B[a]P-DNA adducts are reliable biomarkers for the screening of long-term in utero exposure to smoking and are accurate when compared with maternal self-reported levels of active smoking. Detection of B[a]P-DNA adducts in neonates could provide a useful, noninvasive tool in clinical risk assessment studies but would benefit from further confirmation with another validated biomarker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.