Abstract
Morphologic, gravity, and seismic reflection/refraction data from ca. 10,000 km of Arctic passive continental margins suggest that the numerous oval free-air gravity anomalies, their +50–150 mGal extrema typically located just landward of shelf breaks, are caused by combinations of rapidly deposited Plio-Pleistocene glacial marine sediment loads, older post-breakup sediments, and perhaps causally related density anomalies (mascons) in the underlying oceanic crust. Dispersed seismicity associated with some gravity highs may reflect ongoing brittle, flexural adjustment to the loads. Multi-channel-seismic-controlled depocenter models for several prominent highs (including the Hornsund gravity high re-examined here) suggest that sediments alone do not suffice to explain the gravity highs, unless depocenter seismic velocities have been significantly underestimated. A flexural backstripping model for the Hornsund anomaly only roughly replicates observed gravity. Subjacent 'mascons', if present below some depocenters, may be caused by (1) anomalous subsidence of initially formed dense/thin crust; (2) depocenter blanketing of early-formed crust, mitigating hydrothermal fracturing and related density reduction; or (3) metastable phase transitions, converting basalt/gabbro to denser phases (Neugebauer–Spohn hypothesis), while cracks close or fill under the increased pressures and temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.