Abstract

In recent years, neural architecture search (NAS) has achieved unprecedented development because of its ability to automatically achieve high-performance neural networks in various tasks. Among these, the evolutionary neural architecture search (ENAS) has impressed the researchers due to the excellent heuristic exploration capability. However, the evolutionary algorithm-based NAS are prone to the loss of population diversity in the search process, causing that the structure of the surviving individuals is exceedingly similar, which will lead to premature convergence and fail to explore the search space comprehensively and effectively. To address this issue, we propose a novel indicator, named architecture entropy, which is used to measure the architecture diversity of population. Based on this indicator, an effective sampling strategy is proposed to select the candidate individuals with the potential to maintain the population diversity for environmental selection. In addition, an unified encoding scheme of topological structure and computing operation is designed to efficiently express the search space, and the corresponding population update strategies are suggested to promote the convergence. The experimental results on several image classification benchmark datasets CIFAR-10 and CIFAR-100 demonstrate the superiority of our proposed method over the state-of-the-art comparison ones. To further validate the effectiveness of our method in real applications, our proposed NAS method is applied in the identification of lumbar spine X-ray images for osteoporosis diagnosis, and can achieve a better performance than the commonly used methods. Our source codes are available at https://github.com/LabyrinthineLeo/AEMONAS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.