Abstract
Animal female and male germ-line cells often form syncytial units termed cysts, clusters, or clones. Within these cysts, the cells remain interconnected by specific cell junctions known as intercellular bridges or ring canals, which enable cytoplasm to be shared and macromolecules and organelles to be exchanged between cells. Numerous analyses have shown that the spatial organization of cysts and their functioning may differ between the sexes and taxa. The vast majority of our knowledge about the formation and functioning of germ-line cysts comes from studies of model species (mainly Drosophila melanogaster); the other systems of the cyst organization and functioning are much less known and are sometimes overlooked. Here, we present the current state of the knowledge of female germ-line cysts in clitellate annelids (Clitellata), which is a monophyletic taxon of segmented worms (Annelida). The organization of germ-line cysts in clitellates differs markedly from that of the fruit fly and vertebrates. In Clitellata, germ cells are not directly connected one to another, but, as a rule, each cell has one ring canal that connects it to an anuclear central cytoplasmic core, a cytophore. Thus, this pattern of cell distribution is similar to the germ-line cysts of Caenorhabditis elegans. The last decade of studies has revealed that although clitellate female germ-line cysts have a strong morphological plasticity, e.g., cysts may contain from 16 to as many as 2500 cells, the oogenesis always shows a meroistic mode, i.e., the interconnected cells take on different fates; a few (sometimes only one) become oocytes, whereas the rest play the role of supporting (nurse) cells and do not continue oogenesis.This is the first comprehensive summary of the current knowledge on the organization and functioning of female germ-line cysts in clitellate annelids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.