Abstract

We have recently shown that when initialized with “small” weights, recurrent neural networks (RNNs) with standard sigmoid-type activation functions are inherently biased toward Markov models; even prior to any training, RNN dynamics can be readily used to extract finite memory machines (Hammer & Tiňo, 2002; Tiňo, Čerňanský, &Beňušková, 2002a, 2002b). Following Christiansen and Chater (1999), we refer to this phenomenon as the architectural bias of RNNs. In this article, we extend our work on the architectural bias in RNNs by performing a rigorous fractal analysis of recurrent activation patterns. We assume the network is driven by sequences obtained by traversing an underlying finite-state transition diagram&a scenario that has been frequently considered in the past, for example, when studying RNN-based learning and implementation of regular grammars and finite-state transducers. We obtain lower and upper bounds on various types of fractal dimensions, such as box counting and Hausdorff dimensions. It turns out that not only can the recurrent activations inside RNNs with small initial weights be explored to build Markovian predictive models, but also the activations form fractal clusters, the dimension of which can be bounded by the scaled entropy of the underlying driving source. The scaling factors are fixed and are given by the RNN parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.