Abstract
Herein, we present an innovative graphene oxide (GO)-induced strategy for synthesizing GO-based metal-organic-framework composites (Co-BTC@GO) for high-performance supercapacitors. 1,3,5-Benzene tricarboxylic acid (BTC) is used as an inexpensive organic ligand for the synthesis of composites. An optimal GO dosage was ascertained by the combined analysis of morphology characterization and electrochemical measurement. The 3D Co-BTC@GO composites display a microsphere morphology similar to that of Co-BTC, indicating the framework effect of Co-BTC on GO dispersion. The Co-BTC@GO composites own a stable interface between the electrolyte and electrodes, as well as a better charge transfer path than pristine GO and Co-BTC. A study was conducted to determine the synergistic effects and electrochemical behavior of GO content on Co-BTC. The highest energy storage performance was achieved for Co-BTC@GO 2 (GO dosage is 0.02 g). The maximum specific capacitance was 1144 F/g at 1 A/g, with an excellent rate capability. After 2000 cycles, Co-BTC@GO 2 maintains outstanding life stability of 88.1%. It is expected that this material will throw light on the development of supercapacitor electrodes that hold good electrochemical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.