Abstract

The relatively complex archaeal RNA polymerases are constructed along eukaryotic lines, and require two initiation factors for promoter recognition and specific transcription that are homologues of the RNA polymerase II TATA-binding protein and TFIIB. Many archaea also produce histones. In contrast, the transcriptional regulators encoded by archaeal genomes are primarily of bacterial rather than eukaryotic type. It is this combination of elements commonly regarded as separate and mutually exclusive that promises unifying insights into basic transcription mechanisms across all three domains of life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.