Abstract

Phosphorus deficiency is a critical limit on the cycling of carbon (C), nitrogen (N) and phosphorus (P) in forest ecosystems. Despite the pivotal roles of microbes in driving the biogeochemical cycling of C/N/P, our knowledge on the relationships of soil bacteria and archaea to P deficiency in forest ecosystems remains scarce. Here, we studied 110 acidic soils (average pH 4.5) collected across 700-km subtropical forests with a gradient of available phosphorus (AP) ranging from 0.21 to 17.6 mg/kg. We analyzed the soil C/N/P stoichiometry and studied soil bacterial and archaeal diversity/abundance via high throughput sequencing and qPCR approaches. Our results show that soil P decoupled with N or C when below 3 mg/kg but coupled with C and N when above 3 mg/kg. Archaeal diversity and abundance were significantly higher in low AP (< 3 mg/kg) soils than in high AP (>3 mg/kg) soils, while bacterial were less changed. Compared with bacteria, archaea are more strongly related with soil stoichiometry (C:N, C:P, N:P), especially when AP was less than 3 mg/kg. Taxonomic and functional composition analysis further confirmed that archaeal rather than bacterial taxonomic composition was significantly related with functional composition of microbial communities. Taken together, our results show that archaea are more important than bacteria in driving soil stoichiometry in phosphorus deficient habitats and suggest a niche differentiation of soil bacteria and archaea in regulating the soil C/N/P cycling in subtropical forests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.