Abstract

The microstructures of surface melt layers for W–Cu contact materials after vacuum breakdown were analyzed in detail and the arc motion characteristic was investigated with a digital high-speed video camera. The experimental results revealed that cathode spots probably occurred on the Cu phase during the first breakdown. The Cu-rich melts were sprayed out of the cathode spots due to the high plasma pressure and great volume expansion resulting from the partial boiling of Cu. The spraying of the droplets was clearly observed by a digital high-speed video camera. The calculated work function of the close-packed plane of Cu (111) was smaller than that of W (110) and the arc would firstly appear on the Cu phase of the W–Cu alloys during the breakdown. The theoretical calculations were in exact accordance with the experimental results. The experiment also indicated that liquid phase separation was involved in the microstructure evolution of W–Cu alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.