Abstract

The P efficiency, crop yield, and response of maize to arbuscular mycorrhizal fungus (AMF) Glomus caledonium were tested in an experimental field with long-term (18-year) fertilizer management. The experiment included five fertilizer treatments: organic amendment (OA), half organic amendment plus half mineral fertilizer (1/2 OM), mineral fertilizer NPK, mineral fertilizer NK, and the control (without fertilization). AMF inoculation responsiveness (MIRs) of plant growth and P-uptake of maize were estimated by comparing plants grown in unsterilized soil inoculated with G. caledonium and in untreated soil containing indigenous AMF. Soil total P, available P, microbial biomass P, alkaline phosphatase activity, plant biomass, crop yield and total P-uptake of maize were all significantly increased ( P < 0.05) by the application of OA, 1/2 OM, and NPK, but not by the application of NK. Specifically, the individual crop yield of maize approached zero in the NK-fertilized soils, as well as in the control soils. All maize plants were colonized by indigenous AMF, and the root colonization at harvest time was not significantly influenced by fertilization. G. caledonium inoculation increased mycorrhizal colonization significantly ( P < 0.05) only with the NK treatment, and produced low but demiurgic crop yield in the control and NK-fertilized soils. Compared to the inoculation in balanced-fertilized soils, G. caledonium inoculation in either the NK-fertilized soils or the control soils had significantly greater ( P < 0.05) impacts on soil alkaline phosphatase activity, stem length, plant biomass, and total P-uptake of maize, indicating that AMF inoculation was likely more efficient in extremely P-limited soils. These results also showed that balanced mineral fertilizers and organic amendments did not differ significantly in their effects on MIRs in these soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.