Abstract
Crowd counting is getting more and more attention. More and more collective activities, such as the Olympics Games and the World Expo, are also important to control the crowd number. In this paper, we address the problem of crowd counting in the crowded scene. Our model accurately estimated the count of people in the crowded scene. Firstly, we proposed a novel and simple convolutional neural network, called Global Counting CNN (GCCNN). The GCCNN can learn a mapping, transforms the appearance of image patches to estimated density maps. Secondly, the Local to Global counting CNN (LGCCNN), calculating the density map from local to global. Stiching the local patches constrains the final density map of the larger area, which makes up for the difference values in the perspective map. In general, it makes the final density map more accurate. The dataset we used is a set of public dataset, which are WorldExpo’10 dataset, Shanghaitech dataset, the UCF_CC_50 dataset and the UCSD dataset. The experiments have proved our method achieves the state-of-the-art result over other algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.