Abstract

Abstract The grazing bifurcation and periodic motion switching of the harmonically forced, piecewise linear system with impacting are investigated. The generic mappings relative to the discontinuous boundaries of this piecewise system are introduced. Based on such mappings, the corresponding grazing conditions are obtained. The mapping structures are developed for the analytical prediction of periodic motions in such a system. The local stability and bifurcation conditions for specified periodic motions are obtained. The regular and grazing, periodic motions are illustrated. The grazing is the origin of the periodic motion switching for this system. Such a grazing bifurcation cannot be estimated through the local stability analysis. This model is applicable to prediction of periodic motions in nonlinear dynamics of gear transmission systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.