Abstract

Complex scattering targets are often made by structures constituted by wedges and penetrable substrates which may interact at near field. In this paper, we describe a complete procedure to study this problem with possible developments in radar technologies (like GPR), antenna development, or electromagnetic compatibility (tips near substrates). The diffraction of an incident plane wave by a perfectly conducting (PEC) wedge over a dielectric half-space is studied using generalized Wiener–Hopf equations (GWHEs), and the solution is obtained using analytical and numerical–analytical approaches that reduce the Wiener-Hopf (WH) factorization to integral equations (IEs). The mathematical aspects are described in a unified and consistent theory for angular and layered region problems. The proposed procedure is valid for the general case and the paper focuses on E-polarization at normal incidence. The solutions are given in terms of geometrical/uniform theory of diffraction (GTD/UTD) diffraction coefficients and total far fields for engineering applications. This paper presents several numerical test cases that show the validity of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.