Abstract

BackgroundThe polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A) tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A) tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis.ResultsBy protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (~17%) showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations.ConclusionAn extensive protein network was revealed for plant polyadenylation machinery, in which all predicted proteins were found to be connecting to the complex. The gene expression profiles are indicative that specialized sub-complexes may be formed to carry out targeted processing of mRNA in different developmental stages and tissue types. These results offer a roadmap for further functional characterizations of the protein factors, and for building models when testing the genetic contributions of these genes in plant growth and development.

Highlights

  • The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes

  • As an initial effort to elucidate the mechanism of mRNA polyadenylation and its role in the regulation of gene expression, we present a genome level annotation of Arabidopsis polyadenylation factors, a summary of the expression profiles of these genes, and a systematic analysis of pair-wise protein-protein interaction assays involving the Arabidopsis polyadenylation factor subunits

  • In silico analysis of the expression of Arabidopsis polyadenylation-related genes The Arabidopsis genome possesses genes that encode most of the polyadenylation factor subunits that have been described in other eukaryotes (Table 1; [33])

Read more

Summary

Introduction

The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the ciselements and produce the poly(A) tail. Messenger RNA 3'-end formation is a vital step in gene expression In this RNA processing event, a precursor mRNA is recognized, cleaved, and polyadenylated at the free 3'-OH generated by the processing reaction (for a recent review, see [1]). These signals are recognized by an apparatus with conservation of components amongst eukaryotes This apparatus consists of a complex of factors that control the action of poly(A) polymerases, limiting polyadenylation to RNAs containing polyadenylation signals. 3'-end formation is mediated by a complex that consists of several factors, each of which in turn consists of several polypeptide subunits. While biochemical fractionation and purification has led to the designation of somewhat different complexes in various systems, for the most part, the polypeptide subunits that constitute the polyadenylation machinery in mammals and yeast (the two best-characterized systems) are strikingly conserved [4]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.