Abstract

Receptor kinases convey diverse environmental and developmental inputs by sensing extracellular ligands. In plants, one group of receptor-like kinases (RLKs) is characterized by extracellular leucine-rich repeat (LRR) domains, which interact with various ligands that include the plant hormone brassinosteroid and peptides of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) type. For instance, the CLE45 peptide requires the LRR-RLK BARELY ANY MERISTEM 3 (BAM3) to prevent protophloem formation in Arabidopsis root meristems. Here, we show that other proposed CLE45 receptors, the two redundantly acting LRR-RLKs STERILITY-REGULATING KINASE MEMBER 1 (SKM1) and SKM2 (which perceive CLE45 in the context of pollen tube elongation), cannot substitute for BAM3 in the root. Moreover, we identify MEMBRANE-ASSOCIATED KINASE REGULATOR 5 (MAKR5) as a post-transcriptionally regulated amplifier of the CLE45 signal that acts downstream of BAM3. MAKR5 belongs to a small protein family whose prototypical member, BRI1 KINASE INHIBITOR 1, is an essentially negative regulator of brassinosteroid signaling. By contrast, MAKR5 is a positive effector of CLE45 signaling, revealing an unexpected diversity in the conceptual roles of MAKR genes in different signaling pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.