Abstract

Wood (secondary xylem) is one of the most important sustainable energy sources for humans. Arabidopsis, despite its herbaceous nature, has become an excellent model to study wood formation. Recent progress has shown that conserved molecular mechanisms may exist in herbaceous plants and trees during vascular development and wood formation. Several transcription factor families and plant hormone species as well as other factors contribute to the regulation of xylem development in both Arabidopsis and woody plants. In this review, we highlight how information gained from the analysis of vascular development in Arabidopsis has improved our understanding of wood formation in trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.