Abstract

Regression of retinoblastoma vitreous seeds (VS) during intravitreal chemotherapy can be delayed, resulting in supernumerary injections. Similarly, VS relapse may not be clinically evident at first. A predictive biomarker of tumor regression and relapse could help guide real-time clinical decision making. Retinoblastoma is an oxygen-sensitive tumor; paradoxically, VS survive in the hypoxic vitreous. We hypothesized that VS elaborate pro-angiogenic cytokines. The purpose was to determine if pro-angiogenic cytokine signatures from aqueous humor could serve as a biomarker of VS response to treatment. Multiplex ELISA was performed on aqueous from rabbit eyes with human retinoblastoma VS xenografts to identify expressed proangiogenic cytokines and changes in aqueous cytokine levels during intravitreal treatment were determined. Confirmatory RNAscope in situ hybridization for VEGF-A was performed on human retinoblastoma tumor sections and VS xenografts from rabbits. For human eyes undergoing intravitreal chemotherapy, serial aqueous VEGF-A levels measured via VEGF-A-specific ELISA were compared to clinical response. VEGF-A was highly expressed in human retinoblastoma VS in the xenograft model, and was the only proangiogenic cytokine that correlated with VS disease burden. In rabbits, aqueous VEGF-A levels decreased in response to therapy, consistent with quantitative VS reduction. In patients, aqueous VEGF-A levels associated with clinical changes in disease burden (regression, stability, or relapse), with changes in VEGF-A levels correlating with clinical response. Aqueous VEGF-A levels correlate with extent of retinoblastoma VS, suggesting that aqueous VEGF-A may serve as a predictive molecular biomarker of treatment response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.