Abstract

This study was carried out to investigate the continuous aqueous pretreatment of sugarcane bagasse (SCB) through twin-screw extrusion for a new integrated full valorization, where the solid residue (extrudate) was used for the production of bio-based materials by thermocompression and the filtrate for the production of high-value-added molecules. Two configurations, with and without a filtration module, were tested and the influence of the SCB composition and structure on the properties of the materials were determined. The impact of the liquid-to-solid (L/S) ratio was studied (0.65-6.00) in relation to the material properties and the biomolecule extraction yield in the filtrate (with the filtration configuration). An L/S ratio of at least 1.25 was required to obtain a liquid filtrate, and increasing the L/S ratio to 2 increased the extraction yield to 11.5 g/kg of the inlet SCB. The extrudate obtained without filtration yielded materials with properties equivalent to those obtained with filtration for L/S ratios of at least 1.25. Since the molecule extraction process was limited, a configuration without filtration would make it possible to reduce water consumption in the process while obtaining high material properties. Under the filtration configuration, an L/S ratio of 2 was the best tradeoff between water consumption, extraction yield, and the material properties, which included 1485 kg/m3 density, 6.2 GPa flexural modulus, 51.2 MPa flexural strength, and a water absorption (WA) and thickness swelling (TS) of 37% and 44%, respectively, after 24 h of water immersion. The aqueous pretreatment by twin-screw extrusion allowed for the overall valorization of SCB, resulting in materials with significantly improved properties compared to those obtained with raw SCB due to fiber deconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.