Abstract

In the literature, lead halide perovskites are very notable for their degradation in the presence of polar solvents, such as water. In contrast, in this research, it is observed that adding a minor amount of water into the precursor solution can improve the stability and photoluminescence quantum yield of CsPbBr3 nanocrystals through a ligand-assisted reprecipitation (LARP) method. In this way, the shape and phase transformation from CsPbBr3 nanoplates to CsPbBr3 /Cs4 PbBr6 nanorods and Cs4 PbBr6 nanowires can be controlled with increasing water content in the precursor solution. Upon adding water up to an ideal amount, CsPbBr3 maintains its phase and nanoplate morphology. The key role of water amount for tuning the crystallinity, stability, morphology, optical properties, and phase transformation of cesium lead halide perovskite nanocrystals will be beneficial in the future commercialization of optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.