Abstract

Ambient solution and amorphous state room temperature phosphorescence (RTP) from purely organic chromophores is rarely achieved. Remarkable stabilization of triplet excitons is realized to obtain deep red phosphorescence in water and in amorphous film state under ambient conditions by a unique supramolecular hybrid assembly between inorganic laponite clay and heavy atom core substituted naphthalene diimide (NDI) phosphor. Structural rigidity and oxygen tolerance of the inorganic template along with controlled molecular organization via supramolecular scaffolding are envisaged to alleviate the unprecedented aqueous phase phosphorescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.