Abstract

Aqueous microgels based on poly(N-vinylcaprolactam) with reversible temperature-induced volume transition are promising "smart" materials for various applications. In this work, the microgels are modified via acid-base interaction by wedge-shaped amphiphilic sulfonic acid molecules with alkyl chains of different lengths and an azobenzene group. In contrast to the pristine microgel the modified microgels retain colloidal stability in water and show different responses to the change of temperature and pH. The azobenzene group in the ligand molecules acts as a spectroscopic and kinetic probe sensing the microenvironment inside the microgel particles. Thus, the observed hyperchromicity upon heating suggests the enhancement of hydrophobicity with the increase of temperature. The hydrophobicity of the microgel interior increases with the increase of the modification degree as indicated by the increase of activation energy of the thermal Z/E isomerization of the azobenzene group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.