Abstract
The successful dispersion and large-scale parallel assembly of individual surface-synthesized large-diameter (1-3 nm) single-walled carbon nanotubes (SWNTs), grown by chemical vapor deposition (CVD), is demonstrated. SWNTs are removed from the growth substrate by a short, low-energy ultrasonic pulse to produce ultrapure long-term stable surfactant-stabilized solutions. Subsequent dielectrophoretic deposition bridges individual, straight, and long SWNTs between two electrodes. Electrical characterization on 223 low-resistance devices (R(average) approximately 200 kOmega) evidences the high quality of the SWNT raw material, prepared solution, and contact interface. The research reported herein provides an important framework for the large-scale industrial integration of carbon nanotube-based devices, sensors, and applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.