Abstract

Field studies have shown that the powerful phytotoxic agent 2,4-dinitrophenol is very likely to form in the atmospheric aqueous phase upon nitration of 2-nitrophenol or 4-nitrophenol. However, until now, the nitration pathway and the relative importance of the two mononitrophenols as sources of 2,4-dinitrophenol were not known. The present study shows that 2,4-dinitrophenol formation from mononitrophenols can take place upon photolysis and photooxidation of nitrite/nitrous acid (NO2-/HONO) and that nitrogen dioxide plays a key role in the process. A possible pathway might be the reaction between light-excited mononitrophenols (both 2- and 4-isomers) and nitrogen dioxide, in the presence of oxygen. As an alternative, nitration might involve *NO3 + *NO2. Possible sources of nitrogen dioxide in the atmospheric aqueous phase are dissolution from the gas phase and oxidation of NO2-. In the latter case, however, it is necessary that NO2- oxidation is faster than the oxidation of mononitrophenols. This would happen, for instance, in the presence of hematite under irradiation. Radiation absorption and scattering by hematite would also inhibit the direct photolysis of nitrophenols. The formation rate and the yield of 2,4-dinitrophenol are slightly higher when starting from 2-nitrophenol than those from 4-nitrophenol, but they are compensated by the higher concentration of 4-nitrophenol in the atmospheric aqueous phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.