Abstract

The mechanisms of plant membrane water permeability have remained elusive until the recent discovery in both vacuolar and plasma membranes of a class of water channel proteins named aquaporins. Similar to their animal counterparts, plant aquaporins have six membrane-spanning domains and belong to the MIP superfamily of transmembrane channel proteins. Their very high efficiency and selectivity in transporting water molecules have been mostly characterized using heterologous expression in Xenopus oocytes. However, techniques set up to measure the osmotic water permeability of plant membranes such as transcellular osmosis, pressure probe measurements, or stopped-flow spectrophotometry are now being used to analyze the function of plant aquaporins in their native membranes. Multiple mechanisms, at the transcriptional and posttranslational levels, control the expression and activity of the numerous aquaporin isoforms found in plants. These studies suggest a general role for aquaporins in regulating transmembrane water transport during the growth, development, and stress responses of plants. Future research will investigate the integrated function of aquaporins in long-distance water transport and cellular osmoregulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.