Abstract

As Chinese aquaculture production accounts for over half of the global aquaculture production and has increased by 50% since 2006, there is growing concern about eutrophication caused by aquaculture in China. This paper presents a model-based estimate of nutrient flows in China's aquaculture system during 2006-2017 using provincial scale data, to spatially distribute nutrient loads with a 0.5° resolution. The results indicate that with the increase in fish and shellfish production from 30 to 47 million tonnes (Mt) during 2006-2017, the nitrogen (N) release increased from 1.0 to 1.6 Mt/year and that of phosphorus (P) from 0.1 to 0.2 Mt/year. Nutrient release from freshwater aquaculture was concentrated in Guangdong, Jiangsu, and Hubei, and that from mariculture in Shandong, Fujian, and Guangdong. Aquaculture is an important strongly concentrated nutrient source in both freshwater and marine environments. Its nutrient release is >20% of total nutrient inputs to freshwater environments in some provinces, and nutrients from mariculture are comparable to river nutrient export to Chinese coastal seas. Aquaculture production and nutrient excretions are now comparable to those of livestock production systems in China and need to be accounted for when analyzing causes of eutrophication and harmful algal blooms and possible mitigation strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.