Abstract

Antibody drugs have been used to treat many diseases, and to date, this has been the most rapidly growing drug class. However, the lack of suitable methods for real-time and high-throughput monitoring of antibody production and quality control has been a hindrance to the further advancement of antibody drugs or biosimilars. Therefore, we herein report a versatile tool for one-step fluorescence monitoring of antibody production by using aptamer probes selected through the in vitro SELEX method. In this case, DNA aptamers were selected against the humanized IgG1 antibody drug trastuzumab with high specificity and affinity with a Kd value of aptamer CH1S-3 of 10.3 nM. More importantly, the obtained aptamers were able to distinguish native from heat-treated, whereas antibodies failed this test. On the basis of the advantages of rapid detection for aptamers, we designed aptamer molecular beacons for direct and sensitive detection of trastuzumab in complex samples. Unlike traditional antibody-based ELISA, the signal was observed directly upon interaction with the target without the need for time-consuming binding and multiple washing steps. To further highlight biomedical applications, the use of aptamers as potential tools for quality control and traceless purification of antibody drugs was also demonstrated. Thus, aptamers are shown to be promising alternatives for antibody production monitoring, quality control, and purification, providing technical support to accelerate antibody drug development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.