Abstract

Immune checkpoint blockade (ICB) has been hailed as the hope for conquering cancer as ICB could produce a significant and durable response to tumor cells. However, the high cost and severe side effects of ICB drugs limited their application for further anticancer therapy. Here, we developed a photoactivated immunotherapy nanoplatform (Apt@AuNC). This nanoplatform could target tumor tissues via enhanced penetration retention (EPR) effect and the aptamer (Apt) could be released from Apt@AuNC in tumor sites via illumination. The immune system in the tumor area was then activated after the combination of Apt and PD-1 protein. The heat generated from AuNC was able to continue killing tumor cells. This nanoplatform could not only achieve the precise immunotherapy but also significantly facilitate the anticancer efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.