Abstract

Detection of cancer markers is important for early diagnosis and timely treatment of cancer. In this study, we fabricated a tailorable gold nanofilm-anodized aluminum oxide (Au-AAO) ion channel through nanoparticle self-assembly and proposed a highly sensitive and selective Mucin 1 (MUC1) detection method. By engineering the optimal layers of the Au-AAO ion channel and encoding the aptamer between the interlayers, a highly controllable ion rectification phenomenon was observed. From this, the relationship between the rectification ratio (RR) and the concentration of MUC1 was established and the highly sensitive detection of MUC1 is achieved. We found that the aptamer-modified Au-AAO ion channel has a good linear range within the MUC1 concentration of 1-104 fg mL-1 and the limit of detection (LOD) was as low as 0.0364 fg mL-1 (0.0025 aM). Thus, this research opens a new horizon for fabricating multi-functional ion channels as well as developing ultrasensitive detection technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.