Abstract
Let $w$ be the spectral density function of a weakly stationary stochastic process with $w = |h|^2, h$ being an outer function in the upper half plane, and let $\rho^\ast(a) = \operatorname{dist}(e^{ita}h/\bar{h}, H^\infty)$, where $H^\infty$ is the space of boundary functions on $R$ for bounded analytic functions in the upper half plane. It is shown that the standard deviation of the difference between the infinite predictor and the finite predictor from the past of length $T$ does not exceed $\rho^\ast(T)/(1 - \rho^\ast(T))$ times the prediction error of the infinite predictor. Some other estimates relating to the difference between the infinite predictor and the finite predictor are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.