Abstract
The classic bribery problem is to find a minimal subset of voters who need to change their vote to make some preferred candidate win.We find an approximate solution for this problem for a broad family of scoring rules (which includes Borda and t-approval), in the following sense: if there is a strategy which requires bribing k voters, we efficiently find a strategy which requires bribing at most k + Õ(√k) voters. Our algorithm is based on a randomized reduction from bribery to coalitional manipulation (UCM). To solve the UCM problem, we apply the Birkhoff-von Neumann (BvN) decomposition to a fractional manipulation matrix. This allows us to limit the size of the possible ballot search space reducing it from exponential to polynomial, while still obtaining good approximation guarantees. Finding the optimal solution in the truncated search space yields a new algorithm for UCM, which is of independent interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.