Abstract

Approximate Maximum Likelihood Estimation (AMLE) is a simple and general method recently proposed for approximating MLEs without evaluating the likelihood function. The only requirement is the ability to simulate the model to be estimated. Thus, the method is quite appealing for spatial models because it does not require evaluation of the normalizing constant, which is often computationally intractable. An AMLE-based algorithm for parameter estimation of the autologistic model is proposed. The impact of the numerical choice of the input parameters of the algorithm is studied by means of extensive simulation experiments, and the outcomes are compared to existing approaches. AMLE is much more precise, in terms of Mean-Square-Error, with respect to Maximum pseudo-likelihood, and comparable to ML-type methods. Although the computing time is non-negligible, the implementation is straightforward and the convergence conditions are weak in most practically relevant cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.