Abstract
In this work, minibatch MCMC sampling for feedforward neural networks is made more feasible. To this end, it is proposed to sample subgroups of parameters via a blocked Gibbs sampling scheme. By partitioning the parameter space, sampling is possible irrespective of layer width. It is also possible to alleviate vanishing acceptance rates for increasing depth by reducing the proposal variance in deeper layers. Increasing the length of a non-convergent chain increases the predictive accuracy in classification tasks, so avoiding vanishing acceptance rates and consequently enabling longer chain runs have practical benefits. Moreover, non-convergent chain realizations aid in the quantification of predictive uncertainty. An open problem is how to perform minibatch MCMC sampling for feedforward neural networks in the presence of augmented data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.