Abstract
The notion of exact bisimulation equivalence for nondeterministic discrete systems has recently resulted in notions of exact bisimulation equivalence for continuous and hybrid systems. In this paper, we establish the more robust notion of approximate bisimulation equivalence for nondeterministic nonlinear systems. This is achieved by requiring that a distance between system observations starts and remains, close, in the presence of nondeterministic system evolution. We show that approximate bisimulation relations can be characterized using a class of functions called bisimulation functions. For nondeterministic nonlinear systems, we show that conditions for the existence of bisimulation functions can be expressed in terms of Lyapunov-like inequalities, which for deterministic systems can be computed using recent sum-of-squares techniques. Our framework is illustrated on a safety verification example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.