Abstract

The growth and dynamics of epithelial tissues govern many morphogenetic processes in embryonic development. A recent quantitative transition in data acquisition, facilitated by advances in genetic and live-imaging techniques, is paving the way for new insights to these processes. Computational models can help us understand and interpret observations, and then make predictions for future experiments that can distinguish between hypothesised mechanisms. Increasingly, cell-based modelling approaches such as vertex models are being used to help understand the mechanics underlying epithelial morphogenesis. These models typically seek to reproduce qualitative phenomena, such as cell sorting or tissue buckling. However, it remains unclear to what extent quantitative data can be used to constrain these models so that they can then be used to make quantitative, experimentally testable predictions. To address this issue, we perform an in silico study to investigate whether vertex model parameters can be inferred from imaging data, and explore methods to quantify the uncertainty of such estimates. Our approach requires the use of summary statistics to estimate parameters. Here, we focus on summary statistics of cellular packing and of laser ablation experiments, as are commonly reported from imaging studies. We find that including data from repeated experiments is necessary to generate reliable parameter estimates that can facilitate quantitative model predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.